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Many integral equations arising in electric and magnetic field problems have Green’s 
function kernels, which cause difficulty in integration because of their essential sin- 
gularities. By performing a simple coordinate rotation, these singularities can be shifted 
entirely onto one coordinate axis, so that iterated weighted numerical quadratures 
may be applied to evaluate exactly the projective representation of such integral opera- 
tors on suitable finite-dimensional function spaces. Standard projective methods may 
therefore be applied to solve such integral equations accurately with very little com- 
putational effort. 

A large number of boundary-value problems arising in electric and magnetic 
field calculations may be treated best by formulation in terms of integral equations. 
For example, various electrostatics problems arising in connection with trans- 
mission lines [1,2], skin effect calculations for nonmagnetic conductors [3] and 
many others that involve unbounded solution regions, have been dealt with by 
expressing the fields in Fredholm integral equations of the first or second kinds. 
The major advantages to be realized in such treatment are (1) the inclusion of all 
boundary conditions in the integral operator, and (2) in many problems, reduction 
of the number of space variables by one. Especially for problems naturally 
in two dimensions, the latter advantage may be of very great importance. 

Integral equations are usually very difficult to solve analytically, so that numerical 
methods are normally resorted to. A major difficulty, however, obtrudes in tb 
fact that integral equations arising in electric or magnetic Geld theory have singula. 
kernels, while the approximation theory on which most numerical methods rest 
presupposes continuous kernels. This fact has often hindered the development of 
high-accuracy numerical techniques, and has led to the use of a variety of ingenious 
special approximations for particular problems [4> 51. The object of the present 
paper is to show that, by correct choice of the order of integration, the singularities 
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can often be taken into account exactly, so that computationally superior methods 
can be developed readily. As an illustration of this technique, a method is given for 
determining the electrostatic charge distribution on an infinitely long cylindrical 
conductor of arbitrary polygonal cross-sectional shape, a problem intimately 
related to a wide variety of transmission-line parameter calculations. 

FORMULATION OF THE INTEGRAL EQUATIONS 

It is usual to regard electromagnetic field problems as being composed of a 
differential equation 

w=g (1) 

subject to some set of boundary constraints 

Lq=o, (2) 

where g is a source distribution, and 4 is the desired field. The differential operators 
9 and 9 may be scalar, vector, or dyadic, depending on the nature of the variables 
C$ and g. The equivalent integral equation formulation is obtained by first solving 

LB@ = 6(x), (3) 

where 6(x) is an impulse source function (of appropriate dimensionality) located 
at point X, subject to the homogeneous boundary requirements of Eq. (2). The 
result at a point y will be denoted by @(x; y), and is termed the fundamental 
solution. A solution to the original problem is recoverable by superposition of 
fundamental solutions, in the form 

4(y) = j- &I Rx; Y) dx, (4) 

To furnish a simple example, the distribution of electric scalar potential in the 
space outside an infinitely long charged cylindrical conductor, as in Fig. 1, is 
given by Poisson’s equation 

vy = -p/E0 (5) 

whose fundamental solution is 

@(x; y) = & log Yzy . (6) 



SOLUTION OF INTEGRAL EQUATIONS 

FIG. 1. Infinitely long electrically charged cylindrical conductor. 

Here ray denotes the distance between points x and y. Thus 

cj(y) = J - * p(x) dx. 

More generally, in problems involving inhomogeneous media or other added 
constraints, the fundamental solution may assume a more complicated form. 
Nevertheless, it is usually characterized by a factorable singularity at x = y (most 
often logarithmic in two-dimensional problems, and of form r;i in three dimen- 
sions). That is, fundamental solutions of two-dimensional problems may be 
written in the form 

where the bracketed factor on the right is a continuous function. Even in cases 
in which the singularity has other than logarithmic or inverse-square behavior, 
it is commonly possible to write 

where again the bracketed factor is continuous, and s(r,3 is singular at P,, = 0. 
An example of a very complicated fundamental solution, whose essentially 
logarithmic singularity is nevertheless readily identified, will be found in Ref. [ 

Stated in fully general form, therefore, the problem to be considered is to solve 
an integral equation containing a singularity function in the kernel: 

d(Y) = J 4x; Y> em/1 &I &. WI 

It is assumed that c(x; y) is a continuous function, while s(r,& = s(I x - y 1) 
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possesses a singularity at x = y; the integration is taken to encompass some finite 
region of space. 

SOLUTION BY PROJECTION METHODS 

In general, the solution of linear operator equations of the form 

4 = zg, (10 
where 2 is some linear operator, may be carried out by the following numerical 
approximation procedure [6, 71. Let (ai 1 i = l,..., N) denote a finite set of linearly 
independent functions by which g may be approximated, 

g = C aiclli . 64 

Let (& /j = l,..., M} denote another finite set of linearly independent functions. 
By forming inner products (according to some convenient definition) of (11) with 
each /33 in turn, M simultaneous linear equations are generated: 

(13) 

Since each projection on the left is simply a number, (13) is usually written as a 
matrix equation 

f=La, (14) 

where 

fk = <A P?A (15) 

Ljk = (9%) Pk). (16) 

In order to keep the method computationally simple, it is quite common to select 
function sets so that N = M, resulting in an invertible square matrix L. It is also 
a frequent practice to employ the same set of functions in both roles (the Galerkin 
method). 

A quite worrisome difficulty in the practical application of this method to integral 
operators lies in the fact that the kernel functions contain the singular function 
X(X; y). If one takes as the definition of an inner product the extremely common 
form [X] 

(a, b) I a*b dS, (17) 
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considerable difficulty can be encountered in evaluating the elements of L, since 
they will be given by 

Unless the integrand contains particularly simple functions, analytic integration 
is fraught with difficulties. In consequence, the function sets used in most problems 
solved by projection methods have been relatively simple. 

EVALUATION OF SINGULAR ITERATED INTEGRALS 

In numerous two-dimensional boundary-value problems, the integral given by 
(18) represents an iterated contour integral. 

In this case, it is possible to devise a rigorously valid numerical inte~atio~ 
method which fully accounts for the singularity of ~(1 x - y 1). 

(a) 

FIG. 2. Region of integration for Eq. (18): (a) as represented in x - y plane; (b) as represented 
in u - v plane. 

In the x - y plane, Eq. (18) represents a surface integral over a rectangular 
region, as indicated in Fig. 2a. The integrand is continuous everywhere in this 
plane, except along the line x = y, where it is singular Let now the coord;n+ 
transformation be made 

zf = B(x + Y), (19, 
2) = H-x + Y), 
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thereby transforming the region of integration into the region in Fig. 2b. The 
integral to be evaluated, Eq. (18), changes accordingly into 

Lib = 2 j:;4 -20 I> j) - v; u + v) a& + v) a& - v) du dv, (21) 

where the limits of integration, as is obvious from Fig. 2b, are somewhat compli- 
cated. For the integration with respect to U, either of two distinct lower limits will 
apply, depending on the value of v: 

Similarly, the upper limits are given by 

u, = x2 + vi, 2Lj2<vg2!Kp, 

(23) 
= Y2 - v, B-p<v+2L. 

Since all the functions oli , as well as c, are continuous, there is no fundamental 
difficulty in constructing approximations to the function 

w(v) = j’” cajcxi du 
Ul 

(24) 

by numerical quadratures, for any given value of v; both the integrand and the 
limits of integration are well defined. The formulation of Ljk , as in (21), may then 
be accomplished by finding 

Ljk = 2 
3 

- s(l -2v I) w(v) dv. (25) 
*1 

However, this integration presents no problem, provided s is a function such that 
there exist weighted quadrature formulas of the type 

s ’ 4Z>f(4 dz = c difbd 
0 i 

for in such a case, Lj, may be written as 

(26) 

Lj,c = 2 j,“” ~(1 -2v I) w(v) dv - 2 jr s(l -2v I) w(u) dv (27) 
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FIG. 3. Locations of three-point Gaussian product quadrature nodes, in x - y plane, for 
evaluation of Eqs. (18). The nodes shown will yield exact integration for a biquintic integrand. 

and the quadrature formula (26) applied twice. It remains to be noted that for 
the most common types of singularity arising in electric or magnetic field problems, 
e.g., s(z) = log z, suitable quadrature formulas either have already been tabulated 
[9], or can be derived by following established methods. The combination of 
numerical quadratures applied to (25) and (24) in turn, yields integration methods 
that closely resemble those well established for cones [lo], except for the weighte 
nature of one of the formulas. For example, if three-point Gaussian formulas 
are used in u and z: in turn, the array of integration nodes for the region shown in 
Fig. 2a appears as in Fig. 3. Naturally it is only necessary to determine the node 
locations and quadrature weights using the argument indicated above; there is no 

need to carry out the actual coordinate transformations in the computer program- 
ming. 

APPLICATIONS in I~LECTROSTATICS PROBLEMS 

The above method of forming projections can be applied to any set of functions 
(cz> whose integrals can be well approximated by Gaussian (or other) quadrature 
formulas. Since an n-point Gaussian rule is known to integrate a polynomial of 
degree 2n - 1 exactly, polynomials readily suggest themselves as suitable expansion 
functions. Because any complete set of linearly independent polynomials of given 
degree spans the same function space, there is no particular reason for choosing 
any one kind of polynomial over another, except computational convenience 
For the present examples, interpolation polynomials of closed type, with e 
spaced nodes (the Newton-Cotes interpolation polynomials) were used; as an 
alternative, the monomials 1, X, x2,... were also tried. It is gratifying to report 
that the results from both sets were identical, within the arithmetic error limits of 
the machine used. 



80 SILVESTER AND HSIEH 

A 
I -3 
I f 

FIG. 4. Relative charge density distribution on an infinitely long, very thin, flat, conductive 
ribbon. The broken line indicates the exact solution; Nis the degree of the polynomial approxima 
tion employed. 

I 

FIG. 5. Relative charge density distribution on one side of a square, inflnitely long, conductor, 
calculated using two different degrees N of polynomial approximation. 
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Figure 4 exhibits the results obtained for the classical, and analytically solvable, 
problem of charge distribution on a thin flat strip conductor. The analytic solution 
is also shown for comparison. It is immediately apparent that the approximate 
solutions exhibit the oscillatory behaviour about the true solution that is normally 
expected from least-squares approximations. Since the solution must be an even 
function, no difference should be observed between approximations with poly- 
nomials of degree 2n, or 2n + 1; this is indeed the case. Solutions appear for 
polynomial sets up to quadratic and quartic, i.e., the sets (1, x2> and (1, x2, +I9 
respectively. Despite the very small function sets employed, the total charge on 
the strip is found to better than 1% by this means. 

In Figure 5, corresponding results are exhibited for a square charged conductor. 
Here it is convenient to choose trial functions which have polynomial behavior 
along one side of the square, and are held at zero on the remaining sides; the 
integrations are thereby simplified as compared to functions possessing nonzero 
values everywhere. Again, the solutions exhibit an oscillatory behavior. 

It ought to be noted that the accuracies obtained by the method described in 
this paper are comparable with those of the solution in [l]; however, the matrix 
problem to be solved in the latter case had a dimensionality five to fifteen times 
larger. Consequently, substantially longer computing times were required, even 
though the individual matrix elements could be evaluated with somewhat less 
work. 

CONCLUSIONS 

The method described in this paper for forming projective approximations of 
integral operators has wide application in numerous continuum problems, in 
fact wherever Green’s functions appear as kernels of the integral operator. In 
applications to electrostatics problems, the ability to form accurate projections 
onto essentially arbitrary function sets has been found to provide fast computing 
times, and it is anticipated that similar results will hold true for integral operators 
of greater complexity. 
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